STUDY MODULE DI	ESCRIPTION FORM	
Name of the module/subject		Code
Power networks and power system control		1010311371010315992
Field of study	Profile of study (general academic, practical)	Year /Semester
Electrical Engineering	(brak)	4/7
Elective path/specialty	Subject offered in:	Course (compulsory, elective)
Networks and Electric Power Systems	Polish	obligatory
Cycle of study:	Form of study (full-time,part-time)	
First-cycle studies	full-time	
No. of hours		No. of credits
Lecture: - Classes: - Laboratory: 15	Project/seminars:	15 3
Status of the course in the study program (Basic, major, other)	(university-wide, from another f	ield)
(brak)	((brak)
Education areas and fields of science and art		ECTS distribution (number and %)
technical sciences		3 100%
Technical sciences		3 100%
Pagnancible for cubicat / leaturer	Pagnanaible for cubic	ot / looturor:

Responsible for subject / lecturer:

dr inż. Ireneusz Grządzielski

email: email: ireneusz.grzadzielski@put.poznan.pl

tel. 61 665 2635 (2392)

Faculty of Electrical Engineering ul. Piotrowo 3A, 60-965 Poznań

Responsible for subject / lecturer:

dr inż. Bogdan Staszak

email: email:bogdan.staszak@put.poznan.pl

tel. 61 665 2635

Faculty of Electrical Engineering ul. Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Possesses basic knowledge of the theory of electrical circuits, electrical machines, electric power engineering and electrical power generation
2	Skills	Has effective self-study ability in the domain of the chosen specialization, is able to integrate the knowledge acquired at the credited courses
3	Social competencies	Is aware of the need to develop his knowledge and competencies, is ready to undertake the cooperation and team work

Assumptions and objectives of the course:

Getting knowledge of the electric power system operation under steady operating conditions, methods of simulation computations of the power flows in the HV and EHV meshed networks, market-based power flow optimization, computations of the symmetrical and asymmetrical steady short-circuit conditions in the power system, practical use of the power flow computation and short-circuit computation program DAKAR.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has general knowledge of automatics and automatic control fundamentals know the criteria and principles of selection power protection automation devices [K_W22++]
- 2. Has knowledge of the electric power system fundamentals including structure and operation states of the electric power sectors: generation, transmission and distribution, knows basic rules of the operation and maintenance of the electric power system elements [K_W24 +++]
- 3. Has knowledge of the electric power engineering development trends in the EU integrated electric power system as well as rules of its safe operation $-[K_W25++]$

Qkille:

- $1. \ Can \ elaborate \ the \ engineer \ task \ completion?s \ documentation \ and \ describe \ the \ task?s \ results \ \ -[K_U07++]$
- 2. Can choose suitable technique and use measuring equipment (analog or digital) to measure the basic measurable magnitudes typical for engineering [K_U14+]
- 3. Can properly use and maintain electrical devices according to the general requirements and technical docu [K_U23+++]

Social competencies:

1. Is aware of the weight and understands different aspects and effects of the electric engineer?s activities including those related to the environmental impact and regarding the responsibility for the undertaken decisions - [K_K02++]

Faculty of Electrical Engineering

Assessment methods of study outcomes

Laboratory:

- 1.Test of the knowledge necessary to deal with problems posed in the lab tasks.
- 2. Assessment of the knowledge and skills related to the lab task completion,
- 3. Assessment of the task report.

Project:

- 1.On-line assesssment of the preparation to the design tasks,
- 2. Evaluation of the completed design task.

Course description

Laboratory: involves experiments carried out by using the power flow and short-circuit calculation programs DAKAR concerning issues presented in lectures- voltage and reactive power control, power flow contol.

Project: includes the design tasks from the scope of the knowledge handed over at the lectures in the year III in semester 6

Basic bibliography:

- 1. Kremens Z., Sobierajski M.: Analiza systemów elektroenergetycznych. WNT, Warszawa, 1996.
- 2. Kacejko P., Machowski J.: Zwarcia w systemach elektroenergetycznych. WNT, Warszawa, 2002.
- 3. Poradnik Inżyniera Elektryka . t.3. WNT, Warszawa 2005

Additional bibliography:

- 1. Cegielski M.: Sieci i systemy elektroenergetyczne. PWN, Warszawa, 1979.
- 2. Kończykowski S., Bursztyński J.: Zwarcia w układach elektroenergetycznych. WNT, Warszawa, 1965.

Result of average student's workload

Activity	Time (working hours)
1. participation in labs	15
2. participation in project classes	15
3. participation in discussions related to labs	10
4. participation in discussions related to project	10
5. preparation to labs	7
6. lab reports? elaboration	8
7. preparing and drawing up a projects	25

Student's workload

Source of workload	hours	ECTS
Total workload	90	3
Contact hours	40	2
Practical activities	50	3